Eco Friendly Gasket Sheet specially created with environmentally friendly solvent free process. Unique features of superior sealability, strong durability and excellent flexibility are distinguished from the conventional products.

Grade		Eco Friendly Gasket Sheet				
Application		Industrial / offshore				Extremely high Temp
В	inder	Synthetic	NBR	SBR	NBR	NBR
Тур	e Code	NA-333	NA-336	NA-339	NA-400	NAS-344
Temp	Continuous Operating	180	220	220	260	320
(°C)	Maximum	260	350	350	430	480
Peak Pressure (Bar)		60	80	80	100	100
рН		4-11 Above is general range and has no guarantee for every case. Please contact us for further details.				
Thickness		0.8mm ~ 3.2mm				
Width		1270mm(50"), 1500mm(60")				
Length		1270mm(50"), 1500mm(60"), 3M~10M, 15M~20M & ETC				
Applicable Fluids		Potable Water, Oils, Fuels Salt Solution, gas line, Mild acids and alkalis				

Comparison of Test Values of Eco Friendly Gasket Sheet with Conventional CNAF

—	Material Specification			Properties Achieved	
l est Items	Test Method	Units	Values	Eco Friendly Gasket Sheet	Conventional CNAF
Tensile Strength Across grain	ASTM F 152	MPa (kg/mm ₂)	0.90	10.00 (1.02)	10.80 (1.10)
Compressibility @350kgf/cm2	ASTM F36J	%	7.00-17.00	10.00	10.00
Recovery after 350kgf/cm ₂	ASTM F36J	Min. %	40.00	76.00	50.00
mmersion Test after 5hrs @ 150°C in ASTM Oil =3 Tensile Loss Thickness Increase	ASTM F146	Max. % Max. %	50.00 20.00	19.00 7.00	45.00 8.00
Immersion Test after 5hrs @ 20-30°C in ASTM Fuel B Thickness Increase Weight Increase	ASTM F146	Max. % Max. %	20.00 20.00	6.00 5.00	8.00 13.00
Density	ASTM D792	g/cm₃	1.60-1.80	1.81	1.60
Ignition Loss after 1/2hr @ 850°C	ASTM F495	Max. %	38.00	30.00	31.00
Flexibility	ASTM F147	-	No Break	Accepted	Accepted

VOC Emission

Gas Permeability

High grade of next generation gasket, Eco Friendly Gasket Sheet shows excellent gas permeability with dedicated protection from fugitive emission control which is considered the possible risk of fire & explosion etc. it provides distinguish level of TA-Luft acceptance criteria.

Peak Pressure and Blow Out Test

Leak rate on internal pressure applied.

According to Global oil major's type acceptance test, this test verifies stable sealing performance without leakage and breakage when internal pressure increases beyond 60 bar with minimum gasket seating stress maintained. This test shall meet related industries requirement.

Blow out Test

Internal Pressure (He)	Leak rate (atm.cm ₃ /s)
60 bar	2.90 x 10-8
80 bar	2.65 x 10-4
100 bar	3.93 x 10-2

Steam Service

Based on excellent gas permeability, it provides stable sealability in steam applications compared with conventional CNAF. Normally drastic change of thermal or pressure cycling is highly effected on sealability, but high dense inner structure of Eco Friendly Gasket Sheet enhances longer and lower life cycle cost for customers.

Temperature
Fluid
Seating Stress

Durability

Actual field test performed at a chemical plant to confirm excellent durability above specified condition and leakage has not detected at steam line for 1,000 days.

Temperature	160°C	
Fluid	Steam, 7 bar	
Seating Stress	30 MPa	

Insulation Properties

In accordance with authorized institute, Eco Friendly Gasket Sheet demonstrates out- standing results in electrical isolation performance. Compare to testing result against conventional CNAF and reinforced PTFE materials, Eco Friendly Gasket Sheet has the highest level of electrical isolation performance in ambient and water dipping condi-

Test	Unit
Insulation Resistance	Ω
Volume Resistance	Ω , cm
Dielectric Strength	kV/mm
Tangent & (ε')	
1kHz, 2mm thickness	-
Dielectric Constant (ɛ'')	
1kHz, 2mm thickness	-

laterial	Insulation Resistance (M Ω)	
lly Gasket eet	4698.5	
IAF	109.4	
ed PTFE	1957.1	
lly Gasket eet	3847.7	
IAF	0.035	
ed PTFE	41.5	

Stress Relief

With superior heat resistance of Eco Friendly Gasket Sheet, above test result demonstrates excellent sealability in critical conditions (high temperature & pressure but reducing seating stress). This strength has shown stable sealing advantage on relief bolting stress at high temperature condition.

Tightness	Reading leak rate on 10 MPa stress point
A Leak = 5 x 10-3 stress applied	
On the gasket <= (MPa)	5x 10-₅ atm.cm ₃ /s
Stress applied on the gaskets	(stress 10 MPa applied)
Up to tightness failure <=(MPa)	

Stress Relief Test

21005

Shoes 1 tees

rated collect

Low Seating Stress

With special UMCS*, Eco Friendly Gasket Sheet shows outstanding stability at low seating stress where achieving standard torque is not possible in actual assembling construction fields.

		Test Result		
Specimen	Eco Friendly Gasket Sheet	CN	٩F	
Seating Stress (MPa)	20	20	40	
N2 Leakage Test (10 bar)	No Leak	Leak (permeation)	No Leak	
Hydraulic Test (31 bar)	No Leak	No Leak	No Leak	

Deformation

Simultaneously applied condition of high seating stress 120MPa and 200°C, Eco Friendly Gasket Sheet has strong physical properties and less deformation while testing verification of gasket thickness, surface change and breakage.

Removability

Eco Friendly Gasket Sheet has designed to considering low maintenance costs. Performance testing under the condition of 120MPa and 200°C. Eco Friendly Gasket Sheet has shown excellent and easy removability with no adhesion on the flange surfaces. This contributes to cost saving and flange protection.

	ltem	Removability	y (surface check)	
	Eco Friendly	Seating & R	emovability *****	
Removability for Heating Cycle Test	Gasket Sheet	Easy removal and no	creep and deformation	
High temperature and pressure test		Seating & F	Removability ****	
200°C x 96 hours : 1 cycle x 4 days	Brand "A"	Brand "A" Easy removal and no creep and		
(10 nours neating + 14 nours cooling)	Brand "B"	Seating & Removability *** Easy removal and no creep and deformation		
		Before	After	

Condition: High seating stress 120Mpa, 200°C Test Result : No Adhesion

Outstanding surface quality of Eco Friendly Gasket Sheet has an exceptional removability without anti-stick surface treatment. Unique surface roughness fulfill less deformation, good adaptability for flange irregularities.

Sheet in Roll—by MECS 1st in the world

Thickness	Width	Length		
	50" (1270mm)	50" (1270mm)		
0.8—3.2mm	60" (1500mm)	60" (1500mm)		
		3m-20m		
SECS : Slit Edge Coiling System MECS : Mill Edge Coiling System				

Water Absorption Rate

T	EST SAMPLE INFORMATION	l
	Sample Name	
Sample Name	Used in the Analysis	Sample Picture
Eco Friendly Gasket Sheet	Koptri-1662186-1	And a man a ma
NA-239	Koptri-1662186-2	A-239 [INM. ARCD NA-239 [INMARCD] 239 J
®		

WATER ABSORPTION RATE RESULTS									
Test Item	Sample Name	Unit	Method	Result					
Koptri-1662186-1	Eco Friendly	07		0.22					
Water Absorption Rate	Gasket Sheet	%	ASTM D570						
Koptri-1662186-2	NA 220	%	ASTM D570	9.10					
Water Absorption Rate	INA-239								

WATER ABSORPTION RATE RAW DATA				WATER ABSORPTION RATE RAW DATA				
Test Item	Run	Water Absorption Rate (%)	Test Item		Run	Water Absorp- tion Rate (%)		
Koptri-1662186-1 Eco Friendly Gasket Sheet	1	0.23		Koptri-1662186-2 NA-239	1	9.10		
	2	0.22			2	8.76		
	3	0.21			3	9.32		
	4	0.22			4	9.57		
	5	0.22			5	8.76		
	sd	0.01			sd	0.36		
	CV	2.90			CV	3.90		
	Average	0.22			Average	9.10		

Productivity

Specially designed by UMCS* process contributes to remarkable improvement in high productivity and excellent die-cutting ability as against conventional CNAF*.